ISI BANGALORE

B Math Algebra II

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

- (b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (c) By default, F denotes a field.

1. [7 points] Prove that a linear system $A\mathbf{x} = \mathbf{b}$ has a solution iff the rank of the appended matrix $A|\mathbf{b}$ is the same as the rank of A.

2. [27 points] For the matrix A given below, find the characteristic polynomial, eigenvalues and eigenvectors (over \mathbb{C} if necessary). Find an invertible 3×3 matrix X such that XAX^{-1} is a diagonal matrix. Using this, compute A^{100} .

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 3 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

3. [14 points] Give an example of 2 square matrices A, B of the same size such that the characteristic polynomials of A, B are equal but their minimal polynomials are not equal. Justify your answer.

4. [14 points] Suppose A is an square matrix such that $A^2 = A$. Prove that A is similar to a diagonal matrix having diagonal entries either 1 or 0.

5. [14 points] Find an orthonormal basis of the subspace W of \mathbb{R}^5 spanned by the vectors

 $[1, 1, 1, 0, 0]^t$, $[0, 0, 1, 1, 1]^t$, $[1, 1, 2, 1, 1]^t$, [0, 0, 1, 0, 0].

6. [10 points] Classify all 3×3 symmetric matrices over \mathbb{C} up to bilinear equivalence, i.e., for the equivalence relation given by $A \sim B$ whenever $B = X^t A X$ for some invertible 3×3 matrix over \mathbb{C} , list all the equivalence classes for " \sim ".

- 7. [14 points] Supply proofs of the following statements proved in class.
 - (i) Any eigenvalue λ of a unitary matrix satisfies $\lambda \overline{\lambda} = 1$.
 - (ii) For a Hermitian symmetric matrix A, if λ_1, λ_2 are distinct eigenvalues of A and v_1, v_2 are eigenvectors corresponding to these eigenvalues, then v_1, v_2 are orthogonal.

JULY 2016

100 Points